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Abstract

This paper presents a comparison of heuris-
tics used to estimate the amount of time it
would take for a spacecraft to image an area
using Boustrophedon decomposition (Choset
and Pignon 1998). Machine learning tech-
niques are used to characterize algorithmic
performance of coverage algorithms. It is
shown that an ordinary least-squares linear
model is among the most accurate in a set of
constant and linear order regression models
both in terms of memory consumption and
schedule duration. These are demonstrated
using the ASPEN planning system (Fukunaga
et al. 1997) on the Eagle Eye domain.

Introduction The ASPEN Eagle Eye model
is an observational coverage scheduler for
space-based, steerable 2D framing instru-
ments. This class includes gimballed telescopes
like the ISERV Pathfinder (Stefanov and
Evans 2015), proposed Eagle Eye ISS telescope
(Knight, Donnellan, and Green 2013) and
steerable satellites like ALL-STAR 1/THEIA
(Brown et al. 2011). Target polygons are
scheduled by rasterizing the polygons into
grids of camera-sized instrument tiles at time
of observation, then planning a path through
instrument tiles (figure 1).

The single area request schedule in fig-
ure 1 required 50.3 seconds runtime to com-
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Figure 1: Detailed framing instrument tiling
(green) of Colorado (blue), with the Bous-
trophedon decomposition center-line in white.
(Choset and Pignon 1998).

pute. The process involves many surface in-
tercepts, polygon operations, constraint checks
and function searches. This is reasonable for
one request, but optimizing a schedule requires
considering multiple possible scheduling times
of many requests. Suppose we optimize a mea-
ger n = 10 area request schedule with an al-
gorithm that has O

(
n3
)

runtime complexity.
At cd ≈ 50.3 seconds per detailed scheduling
operation, overall schedule optimization would
require almost 14 hours runtime.

Abstractly scheduling with a duration
heuristic during optimization would make this
almost 100 times faster. Instead of computing



the full tiling, pretend that the target polygon
is just a single point that the observer stares at
for a duration proportional to the target’s area
(the naive heuristic). This abstract method
scheduled figure 1 in ca = 5.3 ms of runtime.
The O

(
n3
)

overall schedule optimization for
n = 10 area observations takes 5.3 seconds,
followed by a final detailed scheduling cost of
cdn ≈ 503 seconds. More broadly, optimiza-
tion would be almost 10000 times cheaper; we
can afford more of it for a fixed runtime limit.

The problem is that the naive heuristic is
too naive. In this case, it underestimated
the schedule time needed by 16%. This re-
serves insufficient resources for the request,
so the final schedule must be repaired (likely
sub-optimally). The naive estimate could be
margined by some constant factor, but an
overly pessimistic guess would result in over-
reserving of resources and excessive idle time
in the final schedule.

Final schedules are expected to have higher
quality if the optimizer uses more informed
heuristics for activity duration and memory
consumption. This paper applies machine
learning approaches to build a heuristic model
of the Eagle Eye area scheduling algorithms
under a variety of observation conditions. A
computational experiment will compare the
heuristic models against the naive heuristic
and measured truth. Varying machine learn-
ing models and heuristic feature sets are tested
with the goal of finding better alternatives to
the naive heuristic.

Related Work

The “Track and Scheduling Problem” is a
closely related problem within the area obser-
vational coverage planning domain (Lemâıtre
et al. 2002). In this problem, a strip-based
Boustrophedon decomposition of the target
is planned for an agile Earth-observing satel-
lite. Lemâıtre et al. showed that optimiza-
tion of this plan was NP-hard by analogy
to the longest path problem, prompting ac-
ceptance of sub-optimal solutions and restric-
tions to the problem. Lin et al. equated
strip-based ROCSAT-II observational schedul-
ing to schedule optimization with sequence de-
pendent setup times (Lin et al. 2005), which

Pinedo argues is NP-hard by analogy to the
Traveling Salesman Problem (Pinedo 2012).

Slew duration between strips is one
such sequence-dependent setup time, which
Lemâıtre et. al identified as time dependent
and costly to compute (Lemâıtre et al. 2002).
They addressed this with a mean duration
heuristic as part of an abstract method of
scheduling area observations. They first fix
scan direction for an entire overflight, then
decompose the target into rectangular strips
of length `i, each representing a sweep of the
imager across the target body. Duration d was
computed assuming a constant scan rate ṡ as

d =

n∑
i=0

(
`i
ṡ

+ si,i+1

)
(1)

where si,i+1 is the empirically computed
mean duration of an inter-strip transition
(turnaround slew) between strips i and i +
1. This heuristic uses both domain-specific
knowledge of the underlying instrument path
planning algorithm and a domain-agnostic em-
pirical conditional expectation model of inter-
strip transition time.

Our problem is also similar to empirically
estimating the computer runtime Gc(t) re-
quired by the Iterated Local Search (ILS) ap-
proximation algorithm for the Traveling Sales-
man Problem, where runtime is dependent
upon nondeterministic choices and perturba-
tions (Stützle and Hoos 1999).

Our approach borrows techniques from hy-
perheuristics and machine learning. Cowl-
ing et. al introduced the hyperheuristic ap-
proach as choosing the best heuristic to esti-
mate the effects of a decision given the cur-
rent state of the system and cost to evaluate
the heuristic (Cowling, Kendall, and Soubeiga
2000). Engelhardt and Chien found online ma-
chine learning of planning heuristics in ASPEN
to outperform human expert strategies for
scheduling the Earth-observing EO-1 space-
craft (Engelhardt and Chien 2000). Fukunaga
used genetic algorithms to automate discov-
ery of new boolean satisfyability heuristics in
CLASS (Fukunaga 2008). Li et al. augmented
a hyperheuristic search with neural networks
and logistic regression to quickly classify a so-
lution as worthy or unworthy of evaluating a



costly global scoring function (Li, Burke, and
Qu 2011).

Formulation
We treat duration d and memory m as re-
sponse variable outputs of two unknown func-
tions fd and fm, which are time, target, ob-
server design and algorithm-varying:

d = fd (t, target, observer, algorithm) (2)

m = fm (t, target, observer, algorithm) (3)

The goal is to cheaply approximate fd and fm
because they are expensive to compute.

In this study, we constrain the model
to one target archetype and spacecraft de-
sign. We schedule under varying condi-
tions and compute cheap geometric features
(θONA, ȧIFOV, . . .) hoping to discover models
where

d ≈ d̂ = fd (θONA, ȧIFOV, . . .) (4)

m ≈ m̂ = fm (θONA, ȧIFOV, . . .) (5)

The geometric features are explained in the
sections that follow.

We also make a simplifying assumption that
the results of these models can be scaled lin-
early to produce sensible predictions for dif-
ferent areas a, repeat frame count FCount and
mean observer frame rates FRate (including
tile-to-tile slews) by:

ŷ = ŷ0
FCount

FRate
(6)

where ŷ0 is the prediction from the model and
ŷ is the heuristic’s prediction of the memory
or duration required to satisfy the observation
request.

Domain-specific Insight

Tile area changes The target is fixed to
the body being observed, but we assume that
the observer is on a trajectory such that its
position is not fixed. Some overflights are di-
rectly over a target, resulting in small, regular
tiles. At other times, the observer would have
a low, oblique look angle to the target, produc-
ing larger, distended tiles. Figure 2 shows how
obliqueness affects instrument tile area from
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Figure 2: Instrument tile area over the course
of an overflight for a tile centered on the
ground track and one whose closest approach
is 0.1 radians away.

a candidate orbit for the proposed Mission to
Understand Ice Retreat (MUIR).

Figure 2 shows that off-nadir angle affects
tile area, which affects overall schedule time.
We infer that an accurate heuristic model
should be queried for each schedule time con-
sidered, as off-nadir angle changes over time.

Solar Geometry Ideally, all tiles would be
perfectly aligned, leaving no gaps or excessive
overlap. In practice, the rotation of the craft,
and thus the rotation of the tiles, cannot be
chosen freely. One such constraint is the loca-
tion of the Sun: in order to align the craft’s
solar panels to the Sun, or avoid pointing in-
struments at the Sun, the entire craft must ro-
tate. As a result, the tiles will rotate as well.

For example, the ALL-STAR 1 CubeSat’s
THEIA imagery payload had a rectangular
field of view (Brown et al. 2011), lending it-
self to rectangular grid tiling. Its solar arrays,
however, were not articulated - so the craft had
a conflicting need to keep the wings aligned to
the Sun by rotating about the look vector (+X
in figure 3).

Observer Agility Slewing occupies a sig-
nificant portion of the time required to sat-
isfy an area coverage request. This cost de-
pends on the number of tiles (area ratio), the



Figure 3: ALL-STAR/THEIA 3U imagery
CubeSat (Hayden 2013). Image courtesy Col-
orado Space Grant Consortium. Used with
permission.

path through the tiles (algorithm) and ob-
server agility (slew rates). Treating the area
that must be observed to satisfy the target as
a great circles polygon on a unit sphere around
the observer, we compute the target’s area
when projected to the observer’s unit sphere
by following the line integral around the tar-
get polygon at the rate specified by the bus
agility model.

We will measure the area in seconds because
duration is one of the two quantities of interest,
and we can use average frame rate to estimate
memory from duration. By applying solar ori-
entations at each step along the target polygon
bounding curve, we can also address solar ro-
tation costs. This also addresses the fact that
different areas of the polygon have different off-
nadir angles, and therefore different tile areas
on the observed body.

Algorithm Inefficiencies

Turnarounds Continuous scan algorithms
that rely on Boustrophedon decompositions
require turns between major path segments.
The red turnarounds in 4 provide no addi-
tional coverage of the target area, and also re-
quire rate/acceleration matching at both ends.
Small variations can change the amount of

Figure 4: Boustrophedon decomposition
(white) with waste turnarounds in red.

schedule time needed:

• Scan direction across target

• Slower, curved turnarounds

• Varying scan rates per leg

These cost variations cause us to expect that
each algorithmic variation will require its own
unique heuristic model.

Solar Alignment Policies The grid-based
planning algorithm tested in this paper de-
fines its grid at the start of a window under
consideration. Spacecraft orientation, how-
ever, is defined by schedule-time basis vec-
tors. The primary vector in figure 3 is x̂ to-
ward the grid point, with the secondary vector
ŝdes = R1 (−45◦) ŷ as the projection of the Sun
vector in the YZ plane. Solar alignment is part
of the slew cost, so this algorithm is expected
to be sensitive to solar geometry. Solar geom-
etry features that may inform the model:

• Solar Elevation Angle (SEA)



• Observer-target-Sun phase angles

In the worst case, the conflict between contin-
uous solar alignment and planning grid align-
ment causes the instrument field of view to
rotate significantly out of alignment with the
planning grid, resulting in gaps in coverage
that require a second pass.

Potential Features

In order to estimate different outputs of the
scheduling process, a handful of different fea-
tures were considered which were believed to
influence the response variables we wish to
model. These features can be roughly cate-
gorized as point, perimeter, or area-based:

Point-based These features require only a
measurement at a single point.These measure-
ments are quick, but provide little information
about the area as a whole.

• Off nadir angle

• Solar off-zenith angle at target

• Cross-track angle

• Along-track angle

Perimeter-based These features require
measurements along the entire perimeter P of
all target polygons in the observation request.
The combine observer agility (slew rate) with
observational geometry (skew, rotation).

• Slew time line integral
∮
P
dtslew

• IFOV tile area line integral
∮
P
daIFOV

Target

dp
∮
P
dp

Figure 5: Perimeter integral

Table 1: Feature complexity (p points)

Feature Complexity
Off nadir angle O(1)
Solar off-zenith angle O(1)
Cross-track angle O(1)
Along-track angle O(1)∮
P
daIFOV O(|p|)∮

P
dtslew O(|p|)

Polygon area a O(|p|)
ȧIFOV O(1)

Area-based These features require mea-
surements of the entire interior. These mea-
surements are slow, but provide the most in-
formation about the area.

• Polygon area a (km2)

• IFOV Tile area derivative ȧIFOV

Parameters relating to time to acquire a tile
were ignored as typically negligible compared
to slew costs. Table 1 summarizes complexity
of evaluating these features for a polygon of p
points.

Models

This work focused on constant and linear
models given their ease of implementation and
desirable memory and runtime properties over
non-linear models. Individual models were
evaluated in Excel or in Python using scikit-
learn. The following is a brief overview of the
models considered:

Naive Heuristic Assumes that the target
area is evenly divided into instrument tiles,
and that scheduling time d and memory con-
sumption m depend only on the number of
data takes ntiles.

ntiles =
atarget

aIFOV (tcenter)

cimages

tile
(7)

This implies an assumption that all instrument
tiles have the same area aIFOV, the area of a
tile at the target bounding box center at time
tcenter of the target access/scheduling window
being considered.



The estimated memory consumption
m (tcenter) is

m (tcenter) = c1ntiles
mbits

image
(8)

and the estimated duration d (tcenter) is

d (tcenter) = c2ntiles
∆t

image
(9)

Shortfalls of the Naive Heuristic:

• Ignores algorithm-specific inefficiencies

• Ignores changes in tile area within an access

• Assumes shortest path between tiles

• Hand-tuned parameters c1, c2

Ordinary Least Squares Takes a linear
combination of features x and weights θ and
minimizes the residual squared error with the
observed response y:

argmin
θ

∑
i

(〈xi, θ〉+ β − yi)2 (10)

Different regularization strategies did not
produce materially different results compared
to Ordinary Least Squares, and hence we omit
discussion of Ridge, Lasso, and Elastic Net
methods.

Support Vector Regression The tradi-
tional support vector machine framework for
classification can be retooled to support regres-
sion, which creates a quadratic program that
needs to be solved. Cf. (Smola and Vapnik
1997). Two kernels are evaluated in this paper
- linear and radial basis functions (RBF).

Empirical Conditional Expectation
This approach reports the sample mean of
a response variable based on an empirical
conditional probability table constructed from
binned values of the conditioners from the
training set D.

E(Y |θ, φ) =
∑
y∈D

yp̂(y|θ, φ) (11)

If one dimension of the query point is not
in the CPT, then the conditional expectation
on the available dimension is used, and if both
dimensions are unavailable, then an uncondi-
tioned expectation is used.

Generalized Regression Neural Net-
works Computes weighted average for the
response using a Gaussian kernel estimate of
the joint probability over training set D. Cf.
(Specht 1991).

f(x|X,Y ) =

∑n
i yi exp

(
−〈x− xi〉/2σ2

)∑n
i exp (−〈x− xi〉/2σ2)

(12)
Smoothing parameter σ determined by ex-

haustive grid search.

Methodology
The training and test data was collected by
generating 2000 polygons of random area a =
U (10, 100000) km2 at random center points
on Earth (figure 6), then scheduling each one
independently. Scheduling was constrained to

Figure 6: Target polygons sampled

one overflight. Target polygons that were not
100% satisfied were considered outliers and re-
moved from the data set.

Response variable d (duration) was mea-
sured by subtracting the start time of the first
tile from the end time of the final tile. Re-
sponse variable m (memory) is the sum of all
tile memory reservations. Features are com-
puted at the center time of the access win-
dow. Features and response variables are
printed to console out by the ASPEN user
function gatherAreaEstimatorData, then as-
sembled into a comma-separated-values file by



the python ASPEN run management script
python-driver/src/main.py.

Models are fit to the data and evaluated in
Python. The Least Squares and SVR fami-
lies used scikit-learn implementations. Custom
Python implementations were used for ECE
and GRNN. The Naive Heuristic was com-
puted in ASPEN.

Reasonability of each potential feature was
examined by computing correlation coefficients
with duration and memory. Features that were
reasonably correlated with the response vari-
ables were hand-selected as two-parameter fea-
tures for the models.

Models are evaluated by random subsam-
pling (Han and Kamber 2006), with an 80%
training/20% test split for each of the n = 60
iterations. Accuracy of the models is evalu-
ated by mean error µ and root mean squared
error (RMSE) σ against the test sets. A good
heuristic model based on sufficient data is ex-
pected to have zero mean error and a small
RMSE against the test set.

Results

Feature Identification

Four viable model features (one point feature,
two perimeter features, and one area feature)
were identified (table 2):

• Off-nadir angle

•
∮
P
daIFOV: perimeter area line integral

•
∮
P
dtslew: perimeter slew time line integral

• ȧIFOV

Selected features are discussed in this section.

Table 2: Coefficients of Determination

Feature Duration Memory
Area line integral 0.89 0.92
Slew line integral 0.78 0.81
Off-nadir angle 0.43 0.44
Area 0.32 0.33
ȧIFOV 0.12 0.12
Along-track angle 0.08 0.07
Solar emission angle 0.07 0.07
Cross-track angle 0.00 0.00

Naive Heuristic Figure 7 shows weak cor-
relation between the Naive Heuristic and true
duration. Area of the target is important, but
clearly not the only important driver. A sim-
ple tile to target area ratio is insufficient to
predict schedule time/memory requirements.
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Figure 7: Correlation between the Naive
Heuristic and the true duration (as-scheduled)

Solar Off-Zenith Angle Solar Off-Zenith
angle and memory (figure 8) have two corre-
lation regions. They are weakly correlated for
low to moderate Solar off-zenith angles, but
uncorrelated at high Solar off-zenith angles.
Solar off-zenith angle may be more useful if
managed by a hyperheuristic.
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Figure 8: Solar off-zenith angle vs. memory



Perimeter integrals The instrument tile
area perimeter integral (figure 9) and the slew
time perimeter integral (figure 10) were the
most correlated features discovered in this
study. Unsurprisingly, they are both present
in the best performing feature sets in table 5.
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Figure 9:
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The slew time line integral resembles y =
x2. Future work should examine logarithmic
features of the form y = log

(∮
P
dtslew

)
.
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Duration d

Table 3 shows that all of the models are signifi-
cantly more accurate than the Naive Heuristic.
The ECE model has the worst test set error of
the empirical models evalutated.

Table 3: Mean error (µ) and RMSE (σ)
of models in estimating duration, features:
ȧIFOV,

∮
P
daIFOV.

Train Test
Model µ σ µ σ
OLS 0.00 55.61 -0.65 54.88
Linear SVR -3.82 55.62 -3.66 57.60
RBF SVR -2.23 52.83 -3.26 52.59
ECE 0.00 37.48 4.24 81.23
GRNN 1.44 48.00 1.31 52.56
Naive 0.00 0.00 51.81 173.02
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Figure 11: Off nadir angle and solar angle
raw data obtained from running Eagle Eye
(points), and the corresponding empirical con-
ditional expectation model fit (lines).

Inspection of the Lasso regression coeffi-
cients revealed that the off nadir angle and so-
lar angle were prominent features. Inspection
of the ECE output suggests that there may be
an underlying smooth surface that might be
captured by a nonlinear model.



Table 5: Mean error (µ) and RMSE (σ) of OLS models by feature set (test only).

Duration [s] Memory [kbits]
Feature Set µ σ µ σ
ȧIFOV,

∮
P
daIFOV -0.01 54.94 0.23 34.28

ȧIFOV,
∮
P
daIFOV,

∮
P
dtslew 0.52 45.65 0.08 24.84

Off nadir angle,
∮
P
dtslew 0.07 61.44 -0.05 40.02

Off nadir angle, Solar angle,
∮
P
dtslew 0.23 61.64 -0.32 40.11

ȧIFOV,
∮
P
dtslew -0.17 70.81 0.12 49.65

Off nadir angle, Solar angle -0.89 126.55 -1.07 92.42
Cross-track angle, Along-track angle 1.93 163.59 -1.47 117.80

Memory Consumption m

Memory consumption models follow the same
basic trends as the duration models. All
models are significantly better than the Naive
Heuristic.

Table 4: Mean error (µ) and RMSE (σ) of
models in estimating memory, features: ȧIFOV,∮
P
daIFOV.

Train Test
Model µ σ µ σ
OLS 0.00 34.08 -0.19 33.62
Linear SVR -4.05 34.57 -3.70 34.68
RBF SVR -2.59 31.18 -2.10 32.28
ECE -0.00 22.00 2.85 52.31
GRNN 1.07 28.01 0.98 31.97
Naive 0.00 0.00 -17.28 104.57
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Figure 12: Off nadir angle and solar angle
raw data obtained from running Eagle Eye
(points), and the corresponding empirical con-
ditional expectation model fit (lines).

Comparison of Feature Sets

Table 5 shows the impact of changing the fea-
tures that the model is based on. In each fea-
ture set variation, ordinary least squares (lin-
ear regression) was used as the model. The
best estimates came from feature sets includ-
ing a perimeter integral feature and the instru-
ment tile area derivative ȧIFOV.

Discussion

Model performance varied significantly de-
pending based on the feature set selected. The
feature set

(
ȧIFOV,

∮
P
daIFOV

)
, for example, is

dominated by an approximately linear corre-
lation of

∮
P
daIFOV with memory and dura-

tion (figure 9). Nonlinear regression techniques
produce approximately linear models for this
feature set, all of which are comparable with
ordinary least squares.

The feature set (Off nadir angle,
∮
P
dtslew),

however, has nonlinear correlations with dura-
tion and memory. Radial basis function SVR
and GRNN were significantly more accurate
than ordinary least squares with that feature
set.

While radial basis function SVR and GRNN
had the best performance with varied feature
sets, they each have drawbacks. The GRNN
has high computational complexity and would
likely require GPU implementation in practice.
Limiting scope to ±4σ around the independent
variable tuple made the GRNN faster, but in-
creased the RMSE by approximately 50%. Ra-
dial basis function SVR is slightly slower than
linear kernel SVR or ordinary least squares and
more complicated to implement.



Challenges in sample selection

The random polygon of random area method
of selecting sample targets (figure 6) was the
third method attempted in this study. Binning
the Earth by latitude/longitude made area
and off-nadir angle unrealistically latitude-
dependent (figure 13).

Small area, high
off-nadir angle

Large area, low
off-nadir angle

Figure 13: Unintended latitude dependency

Icosahedron discretization had no latitude
dependency, but it restricted the feature space
sampling to a small manifold because the icosa-
hedron faces had similar area.

Future Work
The primary focus of future work is on ensur-
ing uniform sampling of the off nadir and so-
lar angle space, as the current data set is bi-
ased toward high off-nadir angles, leaving some
parts of the model more accurate than oth-
ers. Second to that is shortening the data ac-
quisition period and ensuring that the process
can be interrupted, resumed, and distributed
across multiple computing resources. Finally,
the start and end points of the tour can be
estimated to improve planning across multiple
areas.

It may also be possible to improve the in-
strument tile area rate of change feature ȧIFOV.
The correlation plots are symmetric about the
line ȧIFOV = 0, and each side appears to have
an upper bound of d = c/ȧIFOV. The fea-
ture log |ȧIFOV| may be more linearly corre-
lated with duration and memory than ȧIFOV

is.
This study should also be repeated with a

more rigorous hyperheuristics structure. Ex-
posing all geometric functions that can affect
visibility and relative dynamics between the
observer and target may allow for automated

feature selection, model selection and hyperpa-
rameter configuration.

Conclusions

A handful of constant and linear order regres-
sion models were evaluated against a baseline
method to predict the duration and consump-
tion of a scheduling call under different con-
ditions. It was found that both schedule du-
ration and memory consumption could be im-
proved by a factor of 3 by using an ordinary
least squares linear model. Future work will fo-
cus on improving these metrics, investigating
start/stop position prediction and automating
feature and model selection.
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